New Incremental Privacy-Preserving Clustering Protocols
نویسندگان
چکیده
منابع مشابه
Privacy-preserving incremental data dissemination
Although the k-anonymity and `-diversity models have led to a number of valuable privacy-protecting techniques and algorithms, the existing solutions are currently limited to static data release. That is, it is assumed that a complete dataset is available at the time of data release. This assumption implies a significant shortcoming, as in many applications data collection is rather a continual...
متن کاملPrivacy-preserving distributed clustering
Clustering is a very important tool in data mining and is widely used in on-line services for medical, financial and social environments. The main goal in clustering is to create sets of similar objects in a data set. The data set to be used for clustering can be owned by a single entity, or in some cases, information from different databases is pooled to enrich the data so that the merged data...
متن کاملPrivacy Preserving Clustering
The freedom and transparency of information flow on the Internet has heightened concerns of privacy. Given a set of data items, clustering algorithms group similar items together. Clustering has many applications, such as customerbehavior analysis, targeted marketing, forensics, and bioinformatics. In this paper, we present the design and analysis of a privacy-preserving k-means clustering algo...
متن کاملCommunication-Efficient Privacy-Preserving Clustering
The ability to store vast quantities of data and the emergence of high speed networking have led to intense interest in distributed data mining. However, privacy concerns, as well as regulations, often prevent the sharing of data between multiple parties. Privacy-preserving distributed data mining allows the cooperative computation of data mining algorithms without requiring the participating o...
متن کاملPrivacy preserving clustering with constraints
The k-center problem is a classical combinatorial optimization problem which asks to find k centers such that the maximum distance of any input point in a set P to its assigned center is minimized. The problem allows for elegant 2-approximations. However, the situation becomes significantly more difficult when constraints are added to the problem. We raise the question whether general methods c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes on Software Engineering
سال: 2013
ISSN: 2301-3559
DOI: 10.7763/lnse.2013.v1.53